
Discontinuous Galerkin method for
hyperbolic problems

Rubén Sevilla
Zienkiewicz Centre for Computational Engineering,

College of Engineering, Swansea University, Bay Campus, SA1 8EN, Wales, UK

DG Summer School - Barcelona - July 2017

Contents

1 Introduction 1

2 DG for the scalar advection equation 2
2.1 Problem statement . 2
2.2 DG weak formulation with flux splitting 2
2.3 Spatial discretisation . 4
2.4 Temporal discretisation . 5
2.5 Computational aspects . 5

2.5.1 Computation of elemental matrices 5
2.5.2 Quadrature-free implementation . 6
2.5.3 Implementation details . 6

2.6 Numerical example . 8
2.7 Exercise . 9

3 DG for the Maxwell’s equations 11
3.1 Problem statement . 11
3.2 DG weak formulation with flux splitting 13
3.3 Spatial and temporal discretisations . 14
3.4 Numerical example . 14
3.5 Exercise . 15

1 Introduction

These notes are aimed to complement the computer lab on discontinuous Galerkin methods
for hyperbolic problems. They are accompanied by two Matlab academic codes for the

1

/ DG for hyperbolic problems - Rubén Sevilla - DG School - Barcelona 2017 .

solution of the scalar advection equation and the Maxwell’s equations in two dimensions
using triangular elements.

2 DG for the scalar advection equation

2.1 Problem statement

Let us consider the scalar advection equation of a quantity u = u(x, t) in a open bounded
domain Ω ⊂ Rnsd with boundary ∂Ω, where nsd denotes the number of spatial dimensions,

∂u

∂t
+ ∇ · F (u) = 0, (1)

where F (u) = au is the hyperbolic flux, with a = (a1, . . . , ansd) the advection velocity
vector and t ∈ (0, T).

The boundary is assumed partitioned as ∂Ω = Γin ∪ Γout where Γin and Γout are the
inflow and outflow parts of the boundary respectively and they are defined as

Γin = {x ∈ ∂Ω | an < 0} Γout = {x ∈ ∂Ω | an > 0} , (2)

where an = a ·n is the normal component of the velocity vector and n is the outward unit
normal vector to ∂Ω.

As usual for hyperbolic problems, boundary conditions can only be imposed on the
inflow part of the boundary [1]. Here a Dirichlet boundary condition is considered, namely

u(x, t) = uD(x, t) on Γin × (0, T). (3)

Finally, the strong form of the problem must be completed with an initial condition

u(x, t0) = u0(x) in Ω. (4)

2.2 DG weak formulation with flux splitting

The weak formulation for a generic element Ωe is obtained after multiplication of Equa-
tion (1) by a test function v and integration in Ωe∫

Ωe

v
∂u

∂t
dΩ +

∫
Ωe

v∇ · F (u)dΩ = 0. (5)

Integrating by parts the second term in Equation (5), the following weak formulation
is obtained ∫

Ωe

v
∂u

∂t
dΩ−

∫
Ωe

∇v · F (u)dΩ +

∫
∂Ωe

vFn(u)dΓ = 0, (6)

where Fn(u) = uan is the normal flux on the boundary and n denotes the outward unit
normal vector to ∂Ωe.

2

/ DG for hyperbolic problems - Rubén Sevilla - DG School - Barcelona 2017 .

In DG methods, the discontinuous nature of the approximation is accounted for by
replacing the physical normal flux at the boundary by a consistent normal numerical flux [2,
3]. A natural choice, for the linear hyperbolic system of interest here, is to employ a flux
splitting technique [4, 5].

To define the numerical flux, the normal flux across the boundary is first split as

Fn(u) = F−n (u) + F+
n (u), (7)

where
F−n (u) = a−nu F+

n (u) = a+
nu, (8)

are the inlfow and outflow normal fluxes respectively and

a+
n :=

1

2

(
an + |an|

)
a−n :=

1

2

(
an − |an|

)
. (9)

The numerical normal flux, evaluated in terms of the trace of the solution on element
Ωe and the trace of the solution uout on the neighbouring element, is then defined as

F̂n(u, uout) = F+
n (u) + F−n (uout) = a+

nu+ a−nu
out. (10)

Remark 1. The upwind character of the numerical flux of Equation (10) is clearly observed
by noting that

a+
n =

{
an if an > 0

0 if an < 0
a−n =

{
0 if an > 0

an if an < 0
, (11)

so, for an inflow boundary the numerical normal flux is given by

F̂n(u, uout) = anu
out. (12)

whereas for an outflow boundary the numerical normal flux is given by

F̂n(u, uout) = anu. (13)

Introducing the definition of the numerical normal flux given in Equation (10) in the
weak form of Equation (6), leads to∫

Ωe

v
∂u

∂t
dΩ−

∫
Ωe

∇v · F (u)dΩ +

∫
∂Ωe

vF̂n(u, uout)dΓ = 0. (14)

Alternatively, integrating by parts again the second term in Equation (14), the following
DG weak form is obtained∫

Ωe

v
∂u

∂t
dΩ +

∫
Ωe

v∇ · F (u)dΩ +

∫
∂Ωe

va−n JuKdΓ = 0, (15)

where it has been used that

F̂n(u, uout)− Fn(u) = F−n (uout)− F−n (u) = a−n JuK

with JuK = uout − u being the jump of the trace of the solution on the boundary.

3

/ DG for hyperbolic problems - Rubén Sevilla - DG School - Barcelona 2017 .

2.3 Spatial discretisation

To obtain a semi-discrete formulation, the solution is approximated as

u(ξ) ' uh(ξ) =
nen∑
j=1

uj(t)Nj(ξ) (16)

on a reference element with local coordinates ξ = (ξ1, . . . , ξnsd). Here uj(t) denotes the
value of the solution at node j, Nj is the shape function associated with node j and nen
is the total number of nodes on the element. The nodal shape functions span the space of
polynomials up to degree k and the number of nodes per element is equal to the dimension
of the corresponding approximation space. For triangular elements nen = (k+ 1)(k+ 2)/2.

An isoparametric mapping is typically employed to link the reference element Ω̂ and
the physical element Ωe

ϕ : Ω̂ ⊂ Rnsd −→ Ωe ⊂ Rnsd

ξ 7−→ ϕ(ξ) :=
nen∑
j=1

xjNj(ξ),
(17)

where xj are the nodal coordinates of the physical element Ωe [6].
Introducing the approximation of u given in Equation (16), using the isoparametric

mapping of Equation (17) and employing a Galerkin formulation (i.e. selecting the space
of weighting functions equal to the space spanned by the interpolation functions), the
following semi-discrete system of ordinary differential equations is obtained

M
∂U

dt
−

nsd∑
k=1

akC
kU +

nfa∑
f=1

mfJUK = 0, (18)

with the elemental matrices defined as

Mij =

∫
Ω̂

NiNj|J|dΩ Ck
ij =

∫
Ω̂

Ni

nsd∑
l=1

J−1
kl

∂Nj

∂ξl
|J|dΩ mf

ij =

∫
Γ̂

NiNj‖Jf‖dΓ, (19)

where J = ∂ϕ/∂ξ denotes the Jacobian of the isoparametric mapping and Jf is the Jaco-
bian of the restriction of the isoparametric mapping to an element face. This restriction
can be written as

ψ : Γ̂ ⊂ Rnsd−1 −→ Γf
e ⊂ Rnsd

ζ 7−→ ψ(ζ) :=
nfn∑
j=1

xjN̂j(ζ),
(20)

where xj denote the face nodal coordinates.

4

/ DG for hyperbolic problems - Rubén Sevilla - DG School - Barcelona 2017 .

2.4 Temporal discretisation

When the system of ordinary differential equations given by Equation (18) is advanced
in time using an explicit time marching algorithm, the scheme requires the solution of
a system of equations element by element at each time step, avoiding the assembly and
solution of a large sparse linear system in each time step. Here a classical fourth order
explicit Runge-Kutta scheme is considered, namely

Un+1 = Un − ∆t

6

(
R(1) + R(2) + R(3) + R(4)

)
. (21)

The four stages are given by

R(1) = R(Un, tn)

R(2) = R(Un + R(1)∆t/2, tn + ∆t/2)

R(3) = R(Un + R(2)∆t/2, tn + ∆t/2)

R(4) = R(Un + R(3)∆t, tn + ∆t).

(22)

where R denotes the residual of the system of ordinary differential equations

R := −M−1

(
nsd∑
k=1

akC
kU +

nfa∑
f=1

mfJUK

)
. (23)

This time marching algorithm is known to be conditionally stable, with a stability
condition given by

∆t ≤ C
h

‖a‖k2
(24)

where h is the minimum element size, k is the degree of approximation and C is a constant
that depends upon the degree of approximation k, see [7] for more details.

2.5 Computational aspects

2.5.1 Computation of elemental matrices

The computation of the elemental mass and convection matrices M and Ck in Equa-
tion (19) is performed using a numerical quadrature defined on the reference element with
nip points

{
ξg
}nip
g=1

and weights {ω}nipg=1

Mij '
nip∑
g=1

Ni(ξg)Nj(ξg)|J(ξg)|ωg

Ck
ij '

nip∑
g=1

Ni(ξg)
nsd∑
l=1

J(ξg)
−1
kl

∂Nj(ξg)

∂ξl
|J(ξg)|ωg

(25)

5

/ DG for hyperbolic problems - Rubén Sevilla - DG School - Barcelona 2017 .

Similarly the face mass matrix m in Equation (19) is computed by using a numerical
quadrature defined on the reference face with mip points

{
ζg
}mip
g=1

and weights {$}mipg=1

mf
ij '

mip∑
g=1

Ni(ζg)Nj(ζg)‖Jf (ζg)‖$g. (26)

In general it is possible to select the number of integration points to integrate exactly
the terms of the elemental mass matrix. In contrast, the terms appearing in the convection
matrices Ck and the face mass matrix m cannot be computed exactly using a numerical
quadrature due to the non-polynomial nature of the inverse of the Jacobian J−1 and the
norm of Jf [8].

2.5.2 Quadrature-free implementation

When the isoparametric mapping of Equation (17) is affine, its Jacobian becomes constant
for each element. This can be used to accelerate the code substantially by adopting a
quadrature-free implementation of the DG method [9,10]. In this situation, the elemental
matrices are computed as

M = |J|M̂ Ck = |J|
nsd∑
l=1

J−1
kl Ĉl mf = ‖Jf‖m̂, (27)

where the matrices

M̂ij =

∫
Ω̂

NiNjdΩ Ĉl
ij =

∫
Ω̂

Ni
∂Nj

∂ξl
dΩ m̂f

ij =

∫
Γ̂

NiNjdΓ, (28)

are computed only once in the reference element and stored. This leads to an efficient
implementation of the DG method where in each time step the evaluation of the residual
of the system of ordinary differential equations given by Equation (23) reduces to matrix-
vector product operations. It is also worth noting that in this situation, it is possible
to compute the integrals of the matrices in Equation (28) exactly by using a numerical
quadrature of order 2k.

Finally, it is important to note that, when meshes of triangular or tetrahedral elements
are considered, the isoparametic element between the reference element Ω̂ and the physical
element Ωe is affine if the edges/faces of the physical element are straight/planar. For other
type of elements the condition is more restrictive. Recently a mesh generation technique
to exploit this property and accelerate a DG solver has been developed [10].

2.5.3 Implementation details

The codes provided use long names for many of the key variables in order to facilitate its
understanding. This section provides a brief description of the most important variables.

The structure referenceElement stores all the information related to the reference
element. It contains:

6

/ DG for hyperbolic problems - Rubén Sevilla - DG School - Barcelona 2017 .

• IPcoordinates: Coordinates of the element integration points. Dimension nip×nsd.

• IPweights: Weights of the element integration points. Dimension nip × 1.

• N: Element shape functions evaluated at the integration points. Dimension nip× nen.

• Nxi,Neta: Derivatives of the element shape functions evaluated at the integration
points. Dimension nip × nen.

• IPcoordinates1d: Coordinates of the face integration points. Dimension mip×(nsd−
1).

• IPweights1d: Weights of the face integration points. Dimension 1× mip.

• N1d: Face shape functions evaluated at the integration points. Dimension mip × nfn.

• faceNodes: Array of dimension nfa × nfn. Row f contains the local numbering of
the element nodes in the f -th face.

• innerNodes: List of interior nodes.

• faceNodes1d: Local node numbering for the face. Dimension 1× nfn.

• NodesCoord: Coordinates of the element nodes used for interpolation. Dimension
nen × nsd.

• NodesCoord1d: Coordinates of the face nodes used for interpolation. Dimension
nfn × (nsd − 1).

• degree: Degree of approximation (k in these notes).

The arrays intFaces and extFaces contain geometric information used to compute
the integrals on interior and exterior faces respectively. intFaces is an array of dimension
nifa × 5, where nifa is the total number of interior faces. In two dimensions only the first
four columns are of interest and they contain, for a given internal face (i.e. for a given row
of intFaces)

• The first element sharing this face.

• The local face number for the first element.

• The second element sharing this face.

• The local face number for the second element.

Similarly, extFaces is an array of dimension nefa × 2, where nefa is the total number of
exterior faces. For a given external face (i.e. for a given row of extFaces)

• The element sharing this face.

7

/ DG for hyperbolic problems - Rubén Sevilla - DG School - Barcelona 2017 .

• The local face number .

In the code provided, intFaces and extFaces are used to perform two different loops.
One for internal faces, where the jump of the solution is known given the two elements shar-
ing this face and another one for external faces where specific expressions of the boundary
term must be implemented to account for the boundary conditions.

Figure 1 shows the flowchart of the DG code for solving hyperbolic problems.

Initialisation
Initial condition and ∆t

Loop on time steps

Compute Error

Loop on faces

Loop on elements

Compute boundary term

Add contribution to the residual vector

Compute hyperbolic fluxes

Solve system element by element

YES

NO
M −

 Basic definitions
Load mesh
Reference element information
Face classification (interiors, exteriors)

Simulation parameters
(Velocity, materials, etc)

Elemental matrices (mass and convection)
for the reference element
Face mass matrix for the reference face

Precomputed information

Add contribution to the residual vector

Element loop finished?

YES

NO

NO

Final time?

Residual vector computation

Face loop finished?

Figure 1: Flowchart of the DG code for solving hyperbolic problems.

2.6 Numerical example

A numerical example is considered to illustrate the concepts presented in this section. The
scalar advection equation is solved in the domain Ω = [0, 3] × [0, 1/2] using triangular
elements with straight edges. Two meshes of the computational domain Ω are represented
in Figure 2.

8

/ DG for hyperbolic problems - Rubén Sevilla - DG School - Barcelona 2017 .

Figure 2: Two computational meshes of the domain [0, 3]× [0, 1/2].

The advection velocity vector is given by a = (1, 0), the inflow boundary condition is
uD(x, t) = sin (π(x1 − t)) and the initial condition is simply u0(x) = 0.

The numerical solution obtained on the coarse mesh of Figure 2 with cubic approxima-
tion at different time instants is shown in Figure 3 to illustrate the evolution of the quantity
u in time. It can be observed how the boundary condition at the inflow generates a wave
that propagates from left to right due to the positive sign of the horizontal component of
the velocity field.

Figure 3: Solution of the scalar advection equations at four time instants.

Next, Figure 4 shows three solutions using different meshes and different degrees of
approximation to illustrate the increased accuracy offered by high-order approximations.
First, Figure 4(a) shows the solution computed on the coarsest mesh of Figure 2 with linear
elements. The low accuracy of this computation can be observed by the high discontinuities
between elements. By using the second mesh in Figure 2 with linear elements, the jump
of the solution between elements is reduced but still its discontinuous character is clearly
observed in Figure 4(b). Finally, Figure 4(c) shows the solution computed on the coarsest
mesh of Figure 2 with quadratic elements. The higher accuracy of this computation is
clearly observed by the substantial reduction of the jump of the solution in the internal
faces.

2.7 Exercise

Modify the code provided to solve the scalar advection equation by introducing a central
numerical flux

F̂n(u, uout) =
1

2

(
Fn(u) + Fn(uout)

)
(29)

and compare the solutions obtained against the solution with an upwind numerical flux.

9

/ DG for hyperbolic problems - Rubén Sevilla - DG School - Barcelona 2017 .

Figure 4: Solution of the scalar advection equation at four time instants.

10

/ DG for hyperbolic problems - Rubén Sevilla - DG School - Barcelona 2017 .

3 DG for the Maxwell’s equations

3.1 Problem statement

Maxwell’s curl equations for a linear isotropic non-conducting medium can be written as
a hyperbolic system of conservation laws

∂U

∂t
+ ∇ · F (U) = 0, (30)

where U is the vector of conserved variables and F =
[
F 1, . . . ,F nsd

]
the hyperbolic fluxes.

In three dimensions, they are given by

U =


εE1

εE2

εE3

µH1

µH2

µH3

 F 1 =


0
H3

−H2

0
−E3

E2

 F 2 =


−H3

0
H1

E3

0
−E1

 F 3 =


H2

−H1

0
−E2

E1

0


with E = (E1, E2, E3) andH = (H1, H2, H3) being the electric and magnetic field intensity
vectors respectivey, ε the electric permittivity and µ the magnetic permeability [11].

In two dimensions, Maxwell’s equations can be decoupled into the so-called transverse
electric (TE) and transverse magnetic (TM) modes. These two sets of equations can also
be written in the conservation form of (30), with the following definitions for the conserved
variables and the fluxes

U =

εE1

εE2

µH3

 F 1 =

 0
H3

E2

 F 2 =

−H3

0
−E1

 (31)

for the TE mode, and,

U =

µH1

µH2

εE3

 F 1 =

 0
−E3

−H2

 F 2 =

E3

0
H1

 (32)

for the TM mode.
It is also convenient to write the hyperbolic fluxes as

F k(U) = AkU (33)

for k = 1, . . . , nsd. For instance, for the TE mode in two dimensions, the Jacobian matrices
Ak are given by

A1 =

0 0 0
0 0 1/µ
0 1/ε 0

 A2 =

 0 0 −1/µ
0 0 0
−1/ε 0 0

 . (34)

11

/ DG for hyperbolic problems - Rubén Sevilla - DG School - Barcelona 2017 .

Two boundary conditions are usually encountered in electromagnetic problems, namely
boundary conditions on unbounded domains and boundary conditions at material inter-
faces.

When simulating electromagnetic problems in unbounded domains, it is necessary to
impose a condition that prescribes the asymptotic behaviour of the solution at infinity [12].
The so-called Silver-Müller radiation boundary condition ensures the existence and unique-
ness of the solution of an electromagnetic problem in an unbounded domain and is given
by

lim
r→∞

(
x× (∇×E) + r

∂E

∂t

)
= 0, lim

r→∞

(
x× (∇×H) + r

∂H

∂t

)
= 0, (35)

where r = ‖x‖2.
A detailed derivation and explanation of the boundary conditions for material interfaces

can be found in [11]. In several applications, the boundary is made of a highly electrical
conducting material that avoids the penetration of electromagnetic fields inside. Such
materials are know as perfect electric conductors (PEC), characterised by a vanishing
tangential electric field at the surface. On the surface of a PEC, the boundary conditions
for the Maxwell’s equations are

n×E = 0 n ·H = 0. (36)

For the TE mode in two dimensions, the second condition is automatically satisfied and
the boundary condition reads

n2E1 − n1E2 = 0. (37)

Additionally, Rankine-Hugoniot jump conditions must hold when a boundary discon-
tinuity is propagating at a certain velocity [13]. For a system of conservation laws such
as (30), the Rankine-Hugoniot conditions state that the jump of the normal flux is propor-
tional to the jump of the conserved variable, with the proportionality constant being the
eigenvalues of the normal Jacobian matrix, namely

JF nK = λjJUK, (38)

where λj are the eigenvalues of the matrix An. For the TE mode in two dimensions the
normal flux is

F n = F 1n1 + F 2n2 =

 −n2H3

n1H3

n1E2 − n2E1

 (39)

and the normal Jacobian matrix is given by

An = A1n1 +A2n2 =

 0 0 −n2/µ
0 0 n1/µ

−n2/ε n1/ε 0

 . (40)

12

/ DG for hyperbolic problems - Rubén Sevilla - DG School - Barcelona 2017 .

The eigenvalues of An are

λ1 = −c λ2 = 0 λ3 = c, (41)

where c = 1/
√
εµ is the velocity of the electromagnetic wave in the corresponding medium.

Finally, the strong form of the problem must be completed with an initial condition

U(x, t0) = U 0(x) in Ω. (42)

3.2 DG weak formulation with flux splitting

The derivation of the weak formulation for the Maxwell’s equations follows the same ra-
tionale presented for the scalar advection equation in Section 2.2. The weak formulation
for a generic element Ωe is obtained after multiplication of (30) by a vector test functions,
V , and integration in Ωe∫

Ωe

V · ∂U
∂t

dΩ−
∫

Ωe

∇V : F (U)dΩ +

∫
∂Ωe

V · F n(U)dΓ = 0, (43)

where the integration by parts has been already performed on the divergence term.
Following the same ideas presented in Section 2.2, the DG weak formulation for the

Maxwell’s equations can be written as∫
Ωe

V · ∂U
∂t

dΩ +

∫
Ωe

V · (∇ · F (U)) dΩ +

∫
∂Ωe

V ·A−n JUKdΓ = 0, (44)

where the numerical normal flux obtained by a flux splitting technique is defined as

F̂ (U ,U out) = F+
n (U) + F−n (U out) = A+

nU +A−nU
out (45)

and a second integration by parts is performed on the weak form after introducing the
numerical normal flux, leading to the jump term on the boundary of an element.

The matrices A+
n and A−n are defined, after diagonalising the matrix An = PΛP−1, as

A+
n =

1

2
(An +A||n), A−n =

1

2
(An −A||n), (46)

where the absolute value of An is defined as A||n := PΛ?P−1 and Λ? is a diagonal matrix
containing the absolute value of the eigenvalues of An [14, 15].

Using the expressions above, the boundary term appearing in the weak form of Equa-
tion (44) can be written as

A−n JUK =
1

2

[
JH3K−

√
ε/µJn1E2 − n2E1K

] −n2

n1

−
√
µ/ε

 . (47)

13

/ DG for hyperbolic problems - Rubén Sevilla - DG School - Barcelona 2017 .

A common approach for simulating problems in unbounded domains is to consider a
first order approximation of the radiation boundary condition given by Equation (35). This
is simply imposed by selecting the incoming flux to be zero, that is

U out = 0. (48)

For a PEC boundary it is important to note that the jump of the quantity n1E2−n2E1

is determined using the boundary condition given by Equation (37), but the jump of H3

is not determined by Equation (37) and the Rankine-Hugoniout jump conditions must be
used. Solving the system of equations given by the Rankine-Hugoniout jump conditions,
the following expression is obtained

Hout
3 = H3 −

√
ε/µ(n1E2 − n2E1). (49)

3.3 Spatial and temporal discretisations

The semi–discrete formulation is obtained by approximating the solution U as

U (ξ) ' Uh(ξ) =
nen∑
j=1

Uj(t)Nj(ξ) (50)

on a reference element with local coordinates ξ = (ξ1, . . . , ξnsd). Here Uj(t) denotes the
value of the solution at node j, Nj is the shape function associated with node j and nen is
the total number of nodes on the element.

Introducing the approximation of the solution in the weak formulation of Equation
(44) and selecting the space of the weighting functions to be the same as the space of the
interpolation functions, leads to the following system of ordinary differential equations

nen∑
j=1

Mij
dUj

dt
+

nen∑
j=1

(nsd∑
k=1

Ck
ijAk

)
Uj −

nfn∑
j=1

(
nfa∑
f=1

mf
ijA

−
n

)
JUjK = 0, (51)

for each node of the element Ωe, that is i = 1, . . . , nen.
The system of ordinary differential equations given by Equation (51) is advanced in

time using the classical fourth order explicit Runge-Kutta scheme described in Section 2.4
where the velocity is now c.

3.4 Numerical example

A numerical example is considered to illustrate the concepts presented in this section. The
TE mode of the Maxwell’s equations is solved in the domain Ω = [0, 1]2 using triangular
elements with straight edges.

The material parameters are ε = 1 and µ = 1, corresponding to free space. The initial
condition is given by

U 0(x) =

 0
0

e−50[(x1−0.5)2+(x2−0.5)2]


14

/ DG for hyperbolic problems - Rubén Sevilla - DG School - Barcelona 2017 .

and a first order absorbing boundary condition is considered on the boundary of the com-
putational domain, simulating the propagation of a pulse in an unbounded domain.

The numerical solution obtained on a coarse mesh with 32 elements and with quintic
approximation at different time instants is shown in Figure 5 to illustrate the evolution
of the conserved variable U in time. It can be observed how the pulse is absorbed when
reaching the outer boundary despite minor reflections are observed due to the first order
approximation of the exact radiation boundary condition.

Figure 5: Solution of the Maxwell’s equations at five time instants. Each row represents a
different components of the vector of conserved variables U .

3.5 Exercise

Implement the necessary routines to introduce a PEC boundary condition in the code
provided and solve the problem in Section 3.4 with the boundary being a PEC.

References

[1] R. J. LeVeque, Finite volume methods for hyperbolic problems. Cambridge university
press, 2002.

15

/ DG for hyperbolic problems - Rubén Sevilla - DG School - Barcelona 2017 .

[2] B. Cockburn, “An introduction to the discontinuous Galerkin method for convection-
dominated problems,” Advanced numerical approximation of nonlinear hyperbolic
equations, pp. 151–268, 1998.

[3] B. Cockburn, G. E. Karniadakis, and C.-W. Shu, “The development of discontinuous
Galerkin methods,” in Discontinuous Galerkin Methods, pp. 3–50, Springer, 2000.

[4] J. Donea and A. Huerta, Finite Element Methods for Flow Problems. Wiley, 2005.

[5] J. S. Hesthaven and T. Warburton, “Nodal discontinuous Galerkin methods: Algo-
rithms, analysis, and applications,” vol. 54 of Texts in Applied Mathematics, New
York: Springer, 2008.

[6] O. C. Zienkiewicz and R. L.Taylor, The Finite Element Method, vol. 1. The basis.
Butterwort-Heinemann, fifth ed., 2000.

[7] J. Hesthaven and T. Warburton, “Discontinuous galerkin methods for the time-domain
maxwell’s equations,” ACES Newsletter, vol. 19, pp. 10–29, 2004.

[8] R. Sevilla, S. Fernández−Méndez, and A. Huerta, “Comparison of high–order curved
finite elements,” International Journal for Numerical Methods in Engineering, vol. 87,
no. 8, pp. 719–734, 2011.

[9] H. L. Atkins and C. W. Shu, “Quadrature-free implementation of discontinuous
Galerkin method for hyperbolic equations,” AIAA Journal, vol. 36, no. 5, pp. 775–782,
1998.

[10] R. Sevilla, O. Hassan, and K. Morgan, “The use of hybrid meshes to improve the
efficiency of a discontinuous Galerkin method for the solution of Maxwell’s equations,”
Computers & Structures, vol. 137, pp. 2–13, 2014.

[11] C. A. Balanis, Advanced Engineering Electromagnetics. New York: John Wiley and
Sons, 1989.

[12] D. Givoli, Numerical Methods for Problems in Infinite Domains. Amsterdam: Elsevier,
1992.

[13] R. J. LeVeque, Numerical methods for conservation laws. Lectures in Mathematics
ETH Zürich, Basel: Birkhäuser Verlag, second ed., 1992.

[14] A. V. Kabakian, V. Shankar, and W. F. Hall, “Unstructured grid-based discontinuous
galerkin method for broadband electromagnetic simulations,” Journal of Scientific
Computing, vol. 20, no. 3, pp. 405–431, 2004.

[15] J. S. Hesthaven and T. Warburton, “Nodal high-order methods on unstructured grids
I. Time-domain solution of Maxwell’s equations,” Journal of Computational Physics,
vol. 181, no. 1, pp. 186–221, 2002.

16

	1 Introduction
	2 DG for the scalar advection equation
	2.1 Problem statement
	2.2 DG weak formulation with flux splitting
	2.3 Spatial discretisation
	2.4 Temporal discretisation
	2.5 Computational aspects
	2.5.1 Computation of elemental matrices
	2.5.2 Quadrature-free implementation
	2.5.3 Implementation details

	2.6 Numerical example
	2.7 Exercise

	3 DG for the Maxwell's equations
	3.1 Problem statement
	3.2 DG weak formulation with flux splitting
	3.3 Spatial and temporal discretisations
	3.4 Numerical example
	3.5 Exercise

