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1 Introduction

These notes are aimed to complement the computer lab on hybridisable discontinuous
Galerkin for second-order elliptic problems. They are accompanied by a Matlab academic
code for the solution of the Poisson equation in two dimensions using triangular elements.
All the content of these notes has been extracted from [1], where a more detailed and
general description of the HDG method for second-order elliptic problems can be found.
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2 Problem statement

Let Ω ∈ Rnsd be an open bounded domain with boundary ∂Ω and nsd the number of spatial
dimensions. The strong form of the model problem is{

−∇ ·∇u = f in Ω,

u = uD on ∂Ω,
(1)

where f is a source term.
The domain Ω is assumed partitioned in nel disjoint subdomains Ωe

Ω =
nel⋃
i=1

Ωe, Ωe ∩ Ωl = ∅ for e 6= l,

with boundaries ∂Ωe, which define an internal interface Γ

Γ :=
[ nel⋃
e=1

∂Ωe

]
\ ∂Ω. (2)

An equivalent strong form of the second-order elliptic problem can be written in mixed
form over the broken computational domain as

∇ · q = f in Ωe, and for e = 1, . . . , nel,

q + ∇u = 0 in Ωe, and for e = 1, . . . , nel,

u = uD on ∂Ω,

JunK = 0 on Γ,

Jn · qK = 0 on Γ.

(3)

where the two last equations correspond to the imposition of the continuity of the primal
variable u and the normal fluxes respectively along the internal interface Γ. Note that the
jump J·K operator has been introduced following the definition by [2]. That is, along each
portion of the interface Γ it sums the values from the left and right of say, Ωe and Ωl,
namely

J�K = �e +�l.

3 The Hybridizable Discontinuous Galerkin

The HDG formulation solves problem (3) in two phases, see [3–8]. First, an element-
by-element problem is defined with (q, u) as unknowns. The local problem determines
qe := q|Ωe and ue := u|Ωe for e = 1, . . . , nel with a new variable û along the interface Γ
acting as a Dirichlet boundary condition, namely

∇ · qe = f in Ωe,

qe + ∇ue = 0 in Ωe,

ue = uD on ∂Ωe ∩ ∂Ω,

ue = û on ∂Ωe \ ∂Ω,

(4)
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for e = 1, . . . , nel. Note that this approach assumes û given. In each element Ωe this
problem produces an element-by-element solution qe and ue as a function of the unknown
û.

Second, a global problem is defined to determine û. It corresponds to the imposition
of the so-called transmission conditions, see [3]

Jn · qK = 0 on Γ, (5)

Note that the continuity of u along Γ is automatically satisfied because u = û on Γ, as
imposed by the local problems (4), and û is unique for adjacent elements.

3.1 Weak formulation

The weak formulation for each element equivalent to (4) is, for e = 1, . . . , nel,

−(∇v, qe)Ωe+ < v,ne · q̂e >∂Ωe= (v, f)Ωe

−(w, qe)Ωe + (∇ ·w, ue)Ωe =< ne ·w, uD >∂Ωe∩∂Ω + < ne ·w, û >∂Ωe\∂Ω,

where the numerical traces of the fluxes q̂e are defined element-by-element as

ne · q̂e :=

{
ne · qe + τe(ue − uD) on ∂Ωe ∩ ∂Ω,

ne · qe + τe(ue − û) elsewhere,
(6)

with τe being a stabilization parameter, see for instance [3–8] and (·, ·)D and < ·, · >S

denote the L2 scalar product in any subdomain D ⊂ Ω and in any domain S ⊂ Γ ∪ ∂Ω
respectively.

With the definition of the numerical fluxes given by (6), the weak problem becomes

< v, τe ue >∂Ωe − (∇v, qe)Ωe+ < v,ne · qe >∂Ωe

= (v, f)Ωe+ < v, τe uD >∂Ωe∩∂Ω + < v, τe û >∂Ωe\∂Ω,
(7a)

−(w, qe)Ωe + (∇ ·w, ue)Ωe

=< ne ·w, uD >∂Ωe∩∂Ω + < ne ·w, û >∂Ωe\∂Ω .
(7b)

The weak form (7) for the local problem is equivalent to the strong form described by (4).
To symmetrize the local problem, an integration by parts is performed on the second

term of the l.h.s. in (7a), leading to

< v, τe ue >∂Ωe + (v,∇ · qe)Ωe

= (v, f)Ωe+ < v, τe uD >∂Ωe∩∂Ω + < v, τe û >∂Ωe\∂Ω,
(8a)

(∇ ·w, ue)Ωe−(w, qe)Ωe

=< ne ·w, uD >∂Ωe∩∂Ω + < ne ·w, û >∂Ωe\∂Ω .
(8b)
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Once the weak form for the local problem is presented, the global problem (5) is of
interest. The weak form equivalent to (5) is simply

nel∑
i=1

< µ,ne · q̂e >∂Ωe\∂Ω= 0.

Then, replacing (6) in the previous equation results in the global weak problem

nel∑
i=1

{
< µ, τe ue >∂Ωe\∂Ω + < µ,ne · qe >∂Ωe\∂Ω − < µ, τe û >∂Ωe\∂Ω

}
= 0. (9)

Note that both ue and qe are known functions of û.

3.2 Spatial discretisation

The variables u and q are approximated in a reference element as

u(ξ) ' uh(ξ) =
nen∑
j=1

ujNj(ξ), (10a)

q(ξ) ' qh(ξ) =
nen∑
j=1

qjNj(ξ), (10b)

where uj and qj denote the value of the corresponding variable at node j, Nj is the shape
function associated with node j and nen is the total number of nodes on the element.

Similarly, the hybrid variable û is approximated in a reference face as

û(ζ) ' ûh(ζ) =
nfn∑
j=1

ûjN̂j(ζ). (11)

where ûj denotes the value of û at node j, N̂j is the shape function associated with node
j and nfn is the total number of nodes on the face.

Introducing the approximation of u, q and û given in Equations (10) and (11) in the
weak form of the local problem given by Equation (8) gives rise to the following system of
equations for each element Ωe (i.e., for e = 1, . . . , nel)[

Auu Auq

AT
uq Aqq

]
e

{
ue

qe

}
=

{
fu
fq

}
e

+

[
Auû

Aqû

]
e

ûe, (12a)

Similarly, introducing the approximation of u, q and û given in Equations (10) and
(11) in the weak form of the gloal problem given by Equation (9) produce the following
system of equations

nel∑
i=1

{ [
AT

uû AT
qû

]
e

{
ue

qe

}
+ [Aûû]e ûe

}
= 0. (12b)
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The elemental matrices appearing in (12) are detailed in Section 3.4.
After replacing the solution of the local problem (12a) in (12b), the global problem

becomes
K̂û = f̂ , (13)

with

K̂ =

nel

A
i=1

[
AT

uû AT
qû

]
e

[
Auu Auq

AT
uq Aqq

]−1

e

[
Auû

Aqû

]
e

+ [Aûû]e (14a)

and

f̂ = −
nel

A
i=1

[
AT

uû AT
qû

]
e

[
Auu Auq

AT
uq Aqq

]−1

e

{
fu
fq

}
e

. (14b)

3.3 Superconvergence by post-processing

The postprocessed solution is computed by performing a postprocessing similar to the
projection traditionally employed in the mixed method by [9], see also [10]. More precisely,
the superconvergent postprocessed solution is obtained by solving the following problem
in each element {

−∇ ·∇u? = −∇ · qh in Ωe,
n ·∇u? = n · qh on ∂Ωe,

(15)

with the additional solvability constraint

(u?, 1)Ωe = (uh, 1)Ωe ,

for e = 1, . . . , nel, see [3, 4, 11].

3.4 Computational aspects

3.4.1 Computation of elemental matrices

The interpolation functions uh and qh are defined in a reference element as detailed in
Equation (10), with local coordinates ξ. The isoparametric transformation is used to
relate local and Cartesian coordinates, namely

ϕ : Ω̂ ⊂ Rnsd −→ Ωe ⊂ Rnsd

ξ 7−→ ϕ(ξ) :=
nen∑
j=1

xjNj(ξ),
(16)

where xi denote the elemental nodal coordinates.
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Similarly, the interpolation function ûh of Equation (11) is defined in a reference face,
with local coordinates ζ. The isoparametric transformation used to relate local and Carte-
sian coordinates is

ψ : Γ̂ ⊂ Rnsd−1 −→ Γf
e ⊂ Rnsd

ζ 7−→ ψ(ζ) :=
nfn∑
j=1

xjN̂j(ζ),
(17)

where xj denote the face nodal coordinates.
The following compact form of the interpolation functions is introduced

N =
[
N1 N2 . . . Nnen

]T
, N̂ =

[
N̂1 N̂2 . . . N̂nfn

]T
,

Nn =
[
N1n N2n . . . Nnenn

]T
, N̂n =

[
N̂1n N̂2n . . . N̂nfnn

]T
,

∇N =
[(
J−1∇N1

)T (
J−1∇N2

)T
. . .

(
J−1∇Nnen

)T]T ,
Nnsd =

[
N1Insd N2Insd . . . NnenInsd

]T
,

where n = (n1, . . . , nnsd) denotes the outward unit normal vector to an edge/face, J is the
Jacobian of the isoparametric transformation and Insd is the identity matrix of dimension
nsd.

The different matrices appearing in (12), computed for each element e = 1, . . . , nel, can
be expressed as

[Auu]e =
∑
∂Ωe

τe

mip∑
g=1

N(ζg)N
T (ζg)‖Jψ‖$g,

[Aqq]e = −
nip∑
g=1

Nnsd(ξg)N
T
nsd

(ξg)|Jϕ|ωg,

[Auq]e =

nip∑
g=1

N(ξg)∇NT (ξg)|Jϕ|ωg,

[fu]e =

nip∑
g=1

N(ξg) f
(
ϕ(ξg)

)
|Jϕ|ωg +

∑
∂Ωe∩∂Ω

τe

mip∑
g=1

N(ζg)uD
(
ψ(ξg)

)
‖Jψ‖$g,

[fq]e =
∑

∂Ωe∩∂Ω

mip∑
g=1

Nn(ζg)uD
(
ψ(ζg)

)
‖Jψ‖$g,

[Auû]e =
∑

∂Ωe\∂Ω

τe

mip∑
g=1

N(ζg) N̂
T (ζg)‖Jψ‖$g,
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[Aqû]e =
∑

∂Ωe\∂Ω

mip∑
g=1

Nn(ζg) N̂
T (ζg)‖Jψ‖$g,

and

[Aûû]e = −
∑

∂Ωe\∂Ω

τe

mip∑
g=1

N̂n(ζg) N̂
T (ζg)‖Jψ‖$g

In the above expressions,
{
ξg
}nip
g=1

and {ω}nipg=1 are integration points and weights defined

on the reference element and
{
ζg
}mip
g=1

and {$}mipg=1 are the integration points and weights

defined on the reference edge/face.

3.4.2 Storage of relevant information to solve the local problems

From a computational point of view, some auxiliary vectors are defined. Equations (12a)
can be written as {

ue

qe

}
=

{
zfu
zfq

}
e

+

[
Zû

u

Zû
q

]
e

ûe (18)

where {
zfu
zfq

}
e

=

[
Auu Auq

AT
uq Aqq

]−1

e

{
fu
fq

}
e

and

[
Zû

u

Zû
q

]
e

=

[
Auu Auq

AT
uq Aqq

]−1

e

[
Auû

Aqû

]
e

Then, (18) is replaced in (12b), which induces the same system of equations (13) but
the matrix and vector defined by (14) are computed as follows:

K̂ =

nel

A
e=1

[
AT

uû AT
qû

]
e

[
Zû

u

Zû
q

]
e

+ [Aûû]e and f̂ = −
nel

A
e=1

[
AT

uû AT
qû

]
e

{
zfu
zfq

}
e

.

3.4.3 Accounting for isoparametric curved elements

It is worth noting that the code provided do not exploit the fact that the Jacobian for
triangular elements with planar edges is constant as done in the code provided for solving
hyperbolic problems. Being a stationary problem the computational cost is less critical
than in the transient problems solved in the previous lab but still this could be introduced
as a way to accelerate the code. More important, this means that the code provided for
solving the Poisson equation also works, with no modification, if the mesh contains curved
elements. In fact, this can also be used to extend the code provided for hyperbolic problems
to handle curved elements, see [12] for more details.

3.4.4 Implementation details

The code provided use long names for many of the key variables in order to facilitate its
understanding. This section provides a brief description of the most important variables.

The structure referenceElement stores all the information related to the reference
element. It contains:

7
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• IPcoordinates: Coordinates of the element integration points. Dimension nip×nsd.

• IPweights: Weights of the element integration points. Dimension nip × 1.

• N: Element shape functions evaluated at the integration points. Dimension nip× nen.

• Nxi,Neta: Derivatives of the element shape functions evaluated at the integration
points. Dimension nip × nen.

• IPcoordinates1d: Coordinates of the face integration points. Dimension mip×(nsd−
1).

• IPweights1d: Weights of the face integration points. Dimension 1× mip.

• N1d: Face shape functions evaluated at the integration points. Dimension mip × nfn.

• faceNodes: Array of dimension nfa × nfn. Row f contains the nodes of the element
in the f -th face.

• innerNodes: List of interior nodes.

• faceNodes1d: Local node numbering for the face. Dimension 1× nfn.

• NodesCoord: Coordinates of the element nodes used for interpolation. Dimension
nen × nsd.

• NodesCoord1d: Coordinates of the face nodes used for interpolation. Dimension
nfn × (nsd − 1).

• degree: Degree of approximation (k).

The structure infoFaces contains intFaces and extFaces, which were also used in
the DG solver for hyperbolic problems. intFaces is an array of dimension nifa × 5, where
nifa is the total number of interior faces. In two dimensions only the first four columns are
of interest and they contain, for a given internal face (i.e. for a given row of intFaces)

• The first element sharing this face.

• The local face number for the first element.

• The second element sharing this face.

• The local face number for the second element.

Similarly, extFaces is an array of dimension nefa × 2, where nefa is the total number of
exterior faces. For a given external face (i.e. for a given row of extFaces)

• The element sharing this face.
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• The local face number .

The array F contains the reciprocal information of infoFaces. It is an array of size
nel × nfa. The terms Fe,f contains an integer number r that

• if less or equal than nifa, indicates that the face f of elemetn e is internal and its
information can be found in row r of intFaces.

• otherwise, indicates that the face f of elemetn e is external and its information can
be found in row r − nifa of extFaces.

Figure 1 shows the flowchart of the DG code for solving hyperbolic problems.

4 Numerical Example

To illustrate the concepts presented in these notes, the model problem (1) is solved in
Ω := [0, 1]2 where the source and boundary conditions are taken such that the analytical
solution is given by

u(x, y) = 4y2 − 4λ2y exp(−λy) cos(6πx) + λ exp(−2λy),

where λ is a parameter.
The first example involves the solution of the model problem with a value of λ=4. An

extremely coarse mesh, with only eight elements, is considered, as shown in the left plot
of Figure 2. The centre plot of Figure 2 depicts the degrees of freedom used in an HDG
computation with approximation order k=6. The black dots on the triangles denote the
nodes used to build the polynomial approximation of the primal and dual solutions, uh

and qh respectively. The red lines are the set of edges Γ where the trace of the solution
is approximated and the dots over these lines are the nodes used to build the polynomial
approximation of û. Note that there are no ûh unknowns along the boundary. The nu-
merical solution computed with a polynomial approximation of degree k=6 is depicted in
the right plot of Figure 2, showing both the approximation of the solution in the element
interiors and the approximation of the trace of the solution on Γ.

Next, the model problem is considered with a value of λ=10. Figure 3 shows the
numerical solution computed on a finer mesh, with 32 elements, and with a degree of
approximation k=4 and k=5. It is worth noting how the jump of the solution on the
element interfaces decreases as the degree of the approximation increases, suggesting the
higher accuracy of the solution computed with k=5. Finally, the postprocessed solution
is also shown, illustrated the gain in accuracy due to the element by element postprocess
described in Section 3.3

5 Exercise

Modify the computer program given to include Neumman boundary conditions. Check [1]
for the details about the HDG formulation with Neumann boundary conditions.
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Solve local problem

Basic definitions
Load mesh
Reference element information
Face classification (interiors, exteriors)   

Loop on element faces

Compute face integrals: A  , A  , A  ,
and optionally    , 
(vectorised loop on integration points)

Compute element integrals: A  , A  , f
(vectorised loop on integration points)

M−
Compute and store    ,    ,    ,  

Element loop finished?

YES

NO

NO

uu

qq uq

fu fq

Assemble and solve global problem

Simulation parameters
(Materials, etc)

u

Loop on elements

uû ûû

Face loop finished?

Loop on elements

NO

YES

Element loop finished?

Postprocess solution

Loop on elements

NO

YES

Element loop finished?

Compute Error

zfu zfqZû
u Zû

q

Figure 1: Flowchart of the HDG code for solving second-order elliptic problems.
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